# A NEW INHIBITOR OF PROTEIN KINASE C, RK-1409 (7-OXOSTAUROSPORINE)

# II. FERMENTATION, ISOLATION, PHYSICO-CHEMICAL PROPERTIES AND STRUCTURE

## HIROYUKI KOSHINO, HIROYUKI OSADA and KIYOSHI ISONO\*

Antibiotics Laboratory, RIKEN, The Institute of Physical and Chemical Research, Wako, Saitama 351-01, Japan

(Received for publication July 10, 1991)

RK-1409, a new inhibitor of protein kinase C, was isolated from the culture broth of *Streptomyces platensis* subsp. *malvinus* RK-1409. The structure was elucidated as 7-oxostaurosporine on the basis of spectroscopic analyses and oxidation of staurosporine.

In the course of screening using a bleb forming  $assay^{1}$ , we reported the novel inhibitors of protein kinase C (PKC) RK-286C (4'-demethylamino-4'-hydroxystaurosporine)<sup>2)</sup> and RK-286D<sup>3)</sup> previously. Recently, *Streptomyces platensis* subsp. *malvinus* RK-1409 was found to produce a new indolocarbazole group antibiotic, RK-1409 shown in Fig. 1. This compound inhibited PKC *in vitro* at an extremely low concentration.

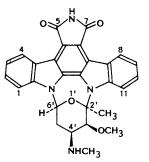
In this paper, we describe the fermentation, isolation, physico-chemical properties, and structure elucidation. Details of the taxonomy and the biological activities were described in the preceding paper<sup>4</sup>).

#### Experimental

## General

MP was measured with a Yanaco micro melting point apparatus. Optical rotation was measured by a Perkin-Elmer 241MC polarimeter. UV and IR spectra were taken on a Hitachi 220A spectrometer and a Shimadzu IR27G recording IR spectrometer, respectively. EI-MS spectra were obtained with a Hitachi M-80 mass spectrometer. <sup>1</sup>H NMR spectra were recorded on a Jeol GSX-500 spectrometer.

### Fermentation


Streptomyces platensis subsp. malvinus RK-1409 was cultured in a 500-ml cylindrical flask containing 70 ml of seed medium (glucose 2%, soluble starch

1%, soybean meal 2.5%, meat extract 0.1%, dried yeast 0.4% and NaCl 0.2%, adjusted to pH 7.0). The fermentation was carried out on a rotary shaker (250 rpm) at 28°C for 72 hours. The seed culture was transferred to a 30-liter jar fermenter containing 18 liters of the same medium. The fermentation was carried out at 28°C with aeration of 13 liters/minute and agitation of 350 rpm for 72 hours.

# Isolation and Purification

Culture broth (18 liters) was filtered and the mycelium was extracted with 10 liters acetone. The

Fig. 1. Structure of RK-1409.



195

acetone extract was concentrated to 3 liters *in vacuo* and the aqueous residue extracted with equal volume of EtOAc three times. The EtOAc extract (8.3 g) was applied to a silica gel column with EtOAc-MeOH as eluent. The active fraction (548 mg) was eluted with EtOAc-MeOH (95:5) and chromatographed on silica gel columns with MeOH-CHCl<sub>3</sub> (5:95) and with MeCN-CHCl<sub>3</sub> (1:4). Further purification by Sephadex LH-20 column chromatography (MeOH) and reverse phase HPLC yielded RK-1409 (2.0 mg). Staurosporine<sup>5)</sup> (160 mg) was also isolated from active fractions after the silica gel chromatography and recrystallization from MeOH.

# HPLC Condition

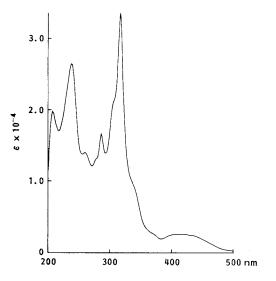
HPLC analysis was performed using a Waters 600 Multisolvent Delivery System and Waters 990J Photodiode Array Detector. HPLC condition was as follows; column: Capcell Pak type  $C_{18}$  (4.6 i.d. × 250 mm, Shiseido, Tokyo) with precolumn (4.6 i.d. × 35 mm), solvent system: 80% MeOH containing 0.01% NH<sub>4</sub>OH, flow rate: 1 ml/minute. Retention times of RK-1409 and staurosporine are 11.0 and 7.7 minutes, respectively.

Preparative HPLC was performed as follows; column: Capcell Pak type  $C_{18}$  (20 i.d. × 250 mm), solvent system: 80% MeOH containing 0.01% NH<sub>4</sub>OH, flow rate: 5.0 ml/minute. Detection: UV at 315 nm. Retention time of RK-1409 was 31 minutes.

### Oxidation of Staurosporine

A solution of (+)-staurosporine (35 mg), 70% *tert*-butyl hydroperoxide (1 ml), Mn(III)acetylacetonate (2.64 mg) and EtOAc (1 ml) was stirred at 4°C. After stirring for 2 days Mn(III)acetylacetonate (2.64 mg) and EtOAc (0.5 ml) were added to the solution, and stirred further for 2 days at 4°C. The reaction mixture was subjected to silica gel (3.0 g) column chromatography eluted with EtOAc 15 ml and subsequently 10% MeOH - CHCl<sub>3</sub> 10 ml. The fraction of 10% MeOH - CHCl<sub>3</sub> was concentrated *in vacuo* and purified by HPLC. 7-Oxostaurosporine purified was 1.5 mg and staurosporine recovered was 5.0 mg. Synthetic 7-oxostaurosporine; MP > 230°C (dec),  $[\alpha]_{D}^{22} + 36.9^{\circ}$  (*c* 0.29, CHCl<sub>3</sub>). Other spectral data and retention time on HPLC analysis were completely identical with natural RK-1409.

#### **Results and Discussion**


### Physico-chemical Properties

RK-1409 was purified as a yellow powder, mp >235°C (dec),  $[\alpha]_D^{20}$ +38.3° (c 0.06, CHCl<sub>3</sub>). The molecular formula of RK-1409 was determined as

C<sub>28</sub>H<sub>24</sub>N<sub>4</sub>O<sub>4</sub> based on HREI-MS data (M<sup>+</sup> *m/z*: 480.1770, calcd: 480.1795). RK-1409 was soluble in MeOH, DMSO, EtOAc and CHCl<sub>3</sub> but insoluble in hexane and water. In the IR spectrum, absorption bands were observed at 3450, 2920, 1750, 1700, 1570, 1460, 1400, 1340, 1310 and 740 cm<sup>-1</sup>. The UV spectrum is shown in Fig. 2;  $\lambda_{max}^{MeOH}$  nm (ε) 208 (19,600), 238 (26,400), 260 (13,600), 287 (16,800), 305 (sh, 20,800), 317 (33,600), 340 (sh, 8,800) and 410 (2,400).

#### Structure

The UV spectrum of RK-1409 suggested the presence of an indolo[2,3*a*]pyrrolo[3,4*c*]carbazole-5,7(6*H*)-dione system as chromophore<sup>6,7)</sup>. The <sup>1</sup>H NMR data of RK-1409 and staurosporine are Fig. 2. UV spectrum of RK-1409 (in MeOH).



| Protons | Chemical shifts <sup>a</sup> (J in Hz) |                     | Ductors | Chemical shifts <sup>a</sup> (J in Hz) |                       |
|---------|----------------------------------------|---------------------|---------|----------------------------------------|-----------------------|
|         | RK-1409                                | Staurosporine       | Protons | RK-1409                                | Staurosporine         |
| 1-H     | 7.32 (br d, 7.6)                       | 7.26 (d, 7.7)       | 11-H    | 7.91 (d, 8.5)                          | 7.91 (d, 8.4)         |
| 2-H     | 7.57 (ddd, 7.6, 7.6,                   | 7.46 (t, 7.7)       | 2'-Me   | 2.37 (s)                               | 2.33 (s)              |
|         | 1.2)                                   |                     | 3'-H    | 3.88 (d, 3.7)                          | 3.85 (d, 3.3)         |
| 3-H     | 7.43 (ddd, 7.9, 7.6,                   | 7.35 (t, 7.7)       | 3'-OMe  | 3.44 (s)                               | 3.38 (s)              |
|         | 1.2)                                   |                     | 4′-H    | 3.36 (ddd, 3.7, 3.7,                   | 3.32 (ddd, 3.3, 3.3,  |
| 4-H     | 9.24 (br d, 7.9)                       | 9.43 (d, 7.7)       |         | 2.5)                                   | 3.1)                  |
| 6-H     | 7.36 (br s)                            | 6.55 (br s)         | 4'-NMe  | 1.56 (s)                               | 1.54 (s)              |
| 7-H     |                                        | 5.03 (d, 15.5),     | 5'-H    | 2.76 (br dd, 14.7,                     | 2.71 (dd, 14.7, 3.1), |
|         |                                        | 4.97 (d, 15.5)      |         | 2.5),                                  | ,.                    |
| 8-H     | 9.35 (d, 7.3)                          | 7.87 (d, 7.7)       | ſ       | 2.40 (ddd, 14.7,                       | 2.37 (ddd, 14.7, 5.1) |
| 9-H     | 7.37 (dd, 7.3, 7.3)                    | 7.30 (t, 7.7)       |         | 5.5, 3.7)                              | 3.3)                  |
| 10-H    | 7.48 (dd, 8.5, 7.3)                    | 7.40 (dd, 8.4, 7.7) | 6′-H    | 6.53 (br d, 5.5)                       | 6.53 (br d, 5.1)      |

Table 1. <sup>1</sup>H NMR data of RK-1409 and staurosporine (CDCl<sub>3</sub>).

<sup>a</sup> Chemical shifts in ppm from TMS as an internal standard.

summarized in Table 1. Comparison of the spectral data and decoupling experiments revealed the presence of two 1,2-disubstituted benzene rings and the same sugar moiety as that of staurosporine. The absence of the signal of the 7-H methylene protons and the chemical shift of a second deshielded aromatic proton at  $\delta$  9.35 ppm 8-H indicated the presence of a carbonyl group at C-7. These data suggested that the structure of RK-1409 was 7-oxostaurosporine. Oxidation of (+)-staurosporine with *tert*-butyl hydroperoxide and Mn(III)acetylacetonate<sup>8)</sup> gave 7-oxostaurosporine. Spectral data of this oxidative product were identical with natural RK-1409. This oxidation confirmed the proposed structure of RK-1409, with the same absolute stereochemistry as that of staurosporine<sup>9)</sup>.

The structure of RK-1409 is a hybrid of a staurosporine type sugar moiety<sup>9~11</sup> and a 7-oxo-type indolocarbazole chromophore which is similar to the aglycone of the antitumor antibiotics rebeccamycin<sup>6,12</sup> and AT2433<sup>7,13</sup>. Therefore the biological activity of this novel antibiotic RK-1409 is interesting from the viewpoint of structure-activity relationships. Details of the inhibitory activities against some protein kinases were described in the preceding paper<sup>4</sup> and elsewhere.

After a preliminary report of these results<sup>14)</sup> and the submission of this paper, we found that 7-oxostaurosporine was reported as an antitumor antibiotic BMY-41950 by Bristol-Myers Squibb Co. and an oxidative derivative of staurosporine by Kyowa Hakko Kogyo Co., Ltd. in patents<sup>15,16)</sup>.

### Acknowledgment

We are grateful to Mr. Y. ESUMI for HREI-MS measurement. HK is a Special Researcher of Basic Science Program supported by Science and Technology Agency, Japan.

#### References

- OSADA, H.; J. MAGAE, C. WATANABE & K. ISONO: Rapid screening method for inhibitors of protein kinase C. J. Antibiotics 41: 925~931, 1988
- TAKAHASHI, H.; H. OSADA, M. URAMOTO & K. ISONO: A new inhibitor of protein kinase C, RK-286C (4'-demethylamino-4'-hydroxystaurosporine). II. Isolation, physico-chemical properties and structure. J. Antibiotics 43: 168 ~ 173, 1990
- OSADA, H.; M. SATAKE, H. KOSHINO, R. ONOSE & K. ISONO: A new indolocarbazole antibiotic, RK-286D. J. Antibiotics 45: 278 ~ 279, 1992
- 4) OSADA, H.; H. KOSHINO, T. KUDO, R. ONOSE & K. ISONO: A new inhibitor of protein kinase C, RK-1409

(7-oxostaurosporine). I. Taxonomy and biological activity. J. Antibiotics 45: 189~194, 1992

- 5) OMURA, S.; Y. IWAI, A, HIRANO, A. NAKAGAWA, J. AWAYA, H. TSUCHIYA, Y. TAKAHASHI & R. MASUMA: A new alkaloid AM-2282 of *Streptomyces* origin. Taxonomy, fermentation, isolation and preliminary characterization. J. Antibiotics 30: 275~282, 1977
- NETTLETON, D. E.; T. W. DOYLE, B. KRISHNAN, G. K. MATSUMOTO & J. CLARDY: Isolation and structure of rebeccamycin — a new antitumor antibiotic from *Nocardia aerocoligenes*. Tetrahedron Lett. 26: 4011~4014, 1985
- 7) GOLIK, J.; T. W. DOYLE, B. KRISHNAN, G. DUBAY & J. A. MATSON: AT2433-A1, AT2433-A2, AT2433-B1 and AT2433-B2 novel antitumor compounds produced by *Actinomadura melliaura*. II. Structure determination. J. Antibiotics 42: 1784~1789, 1989
- DOUMAUX, A. R., Jr. & D. J. TERCKER: Peroxide-metal ion oxidations. II. A convinient synthesis of imides. J. Org. Chem. 35: 2121 ~ 2125, 1970
- FURUSAKI, A.; N. HASHIBA, T. MATSUMOTO, A. HIRANO & S. OMURA: X-Ray crystal structure of staurosporine: a new alkaloid from a *Streptomyces* strain. J. Chem. Soc. Chem. Commun. 1978: 800~801, 1978
- 10) TAKAHASHI, I.; Y. SAITOH, M. YOSHIDA, H. SANO, H. NAKANO, M. MORIMOTO & T. TAMAOKI: UCN-01 and UCN-02, new selective inhibitors of protein kinase C. II. Purification, physico-chemical properties, structural determination and biological activities. J. Antibiotics 42: 571~576, 1989
- 11) TANIDA, S.; M. TAKIZAWA, T. TAKAHASHI, S. TSUBOTANI & S. HARADA: TAN-999 and TAN-1030A, new indolocarbazole alkaloids with macrophage-activating properties. J. Antibiotics 42: 1619~1630, 1989
- BUSH, J. A.; B. H. LONG, J. J. CATINO & W. T. BRADNER: Production and biological activity of rebeccamycin, a novel antitumor agent. J. Antibiotics 40: 668~678, 1987
- 13) MATSON, J. A.; C. CLARIDGE, J. A. BUSH, J. TITUS, W. T. BRADNER & T. W. DOYLE: AT2433-A1, AT2433-A2, AT2433-B1, and AT2433-B2 novel antitumor antibiotic compounds produced by *Actinomadura melliaura*. Taxonomy, fermentation, isolation and biological properties. J. Antibiotics 42: 1547~1555, 1989
- 14) SATAKE, M.; H. KOSHINO, H. OSADA & K. ISONO: Novel inhibitors of protein kinase C, RK-286D and RK-1409. Nippon Nogeikagaku Kaishi 65: 494, 1991
- 15) SCHROEDER, D.; K. S. LAM, J. MATTEL & G. A. HESLER (Bristol-Myers Squibb): BMY-41950 antitumor antibiotic. Eur. Pat. 0,388,962, Mar. 22, 1990
- 16) MURAKATA, C.; A. SATO, M. KASAI, M. MORIMOTO & S. AKINAGA (Kyowa Hakko Kogyo): Staurosporine derivatives. WO 89,07105, Aug. 10, 1989